Show simple item record

dc.contributor.authorZanello, Fabrizio
dc.contributor.authorStanley, Richard P
dc.date.accessioned2017-11-16T16:57:13Z
dc.date.available2017-11-16T16:57:13Z
dc.date.issued2015-04
dc.date.submitted2014-07
dc.identifier.issn0195-6698
dc.identifier.issn1095-9971
dc.identifier.urihttp://hdl.handle.net/1721.1/112204
dc.description.abstractWe investigate the rank-generating function F[subscript λ] of the poset of partitions contained inside a given shifted Ferrers shape λ. When λ has four parts, we show that F [subscript λ] is unimodal when λ=〈n, n-1, n-2, n-3〉, for any n≥4, and that unimodality fails for the doubly-indexed, infinite family of partitions of the form λ=〈n, n-t, n-2t, n-3t〉, for any given t≥2 and n large enough with respect to t.When λ has b≤3 parts, we show that our rank-generating functions F[subscript λ] are all unimodal. However, the situation remains mostly obscure for b≥5. In general, the type of results that we obtain present some remarkable similarities with those of the 1990 paper of D. Stanton, who considered the case of partitions inside ordinary (straight) Ferrers shapes. Along the way, we also determine some interesting q-analogs of the binomial coefficients, which in certain instances we conjecture to be unimodal. We state several other conjectures throughout this note, in the hopes to stimulate further work in this area. In particular, one of these will attempt to place into a much broader context the unimodality of the posets M(n) of staircase partitions, for which determining a combinatorial proof remains an outstanding open problem.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1068625)en_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.EJC.2015.03.007en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleUnimodality of partitions with distinct parts inside Ferrers shapesen_US
dc.typeArticleen_US
dc.identifier.citationStanley, Richard P., and Zanello, Fabrizio. “Unimodality of Partitions with Distinct Parts Inside Ferrers Shapes.” European Journal of Combinatorics 49 (October 2015): 194–202 © 2015 Elsevieren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorStanley, Richard P
dc.relation.journalEuropean Journal of Combinatoricsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-10-27T19:26:20Z
dspace.orderedauthorsStanley, Richard P.; Zanello, Fabrizioen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3123-8241
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record