Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride
Author(s)
Ali, Sajid; Ford, Michael J.; Aharonovich, Igor; Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin; Efetov, Dmitri; Furchi, Marco; Jarillo-Herrero, Pablo; Englund, Dirk R.; ... Show more Show less
DownloadGrosso_et_al-2017-Nature_Communications.pdf (1.332Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photon background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.
Date issued
2017-09Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of PhysicsJournal
Nature Communications
Publisher
Nature Publishing Group
Citation
Grosso, Gabriele, et al. “Tunable and High-Purity Room Temperature Single-Photon Emission from Atomic Defects in Hexagonal Boron Nitride.” Nature Communications 8, 1 (September 2017): 705 © 2017 The Author(s)
Version: Final published version
ISSN
2041-1723