Show simple item record

dc.contributor.authorWu, Jiajun
dc.contributor.authorZhang, Chengkai
dc.contributor.authorXue, Tianfan
dc.contributor.authorFreeman, William T.
dc.contributor.authorTenenbaum, Joshua B.
dc.date.accessioned2017-12-14T15:34:29Z
dc.date.available2017-12-14T15:34:29Z
dc.date.issued2016-12
dc.identifier.urihttp://hdl.handle.net/1721.1/112753
dc.description.abstractWe study the problem of 3D object generation. We propose a novel framework, namely 3D Generative Adversarial Network (3D-GAN), which generates 3D objects from a probabilistic space by leveraging recent advances in volumetric convo-lutional networks and generative adversarial nets. The benefits of our model are three-fold: first, the use of an adversarial criterion, instead of traditional heuristic criteria, enables the generator to capture object structure implicitly and to synthesize high-quality 3D objects; second, the generator establishes a mapping from a low-dimensional probabilistic space to the space of 3D objects, so that we can sample objects without a reference image or CAD models, and explore the 3D object manifold; third, the adversarial discriminator provides a powerful 3D shape descriptor which, learned without supervision, has wide applications in 3D object recognition. Experiments demonstrate that our method generates high-quality 3D objects, and our unsupervisedly learned features achieve impressive performance on 3D object recognition, comparable with those of supervised learning methods.en_US
dc.publisherNeural Information Processing Systems Foundationen_US
dc.relation.isversionofhttps://papers.nips.cc/paper/6096-learning-a-probabilistic-latent-space-of-object-shapes-via-3d-generative-adversarial-modelingen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceNeural Information Processing Systems (NIPS)en_US
dc.titleLearning a probabilistic latent space of object shapes via 3D generative-adversarial modelingen_US
dc.typeArticleen_US
dc.identifier.citationWu, Jiajun et al. "Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling." Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain, December 5-10, 2016. © 2016 Neural Information Processing Systems Foundationen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorWu, Jiajun
dc.contributor.mitauthorZhang, Chengkai
dc.contributor.mitauthorXue, Tianfan
dc.contributor.mitauthorFreeman, William T.
dc.contributor.mitauthorTenenbaum, Joshua B.
dc.relation.journalAdvances in Neural Information Processing Systems 29 (NIPS 2016)en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2017-12-08T13:37:48Z
dspace.orderedauthorsWu, Jianjun; Zhang, Chengkai; Xue, Tianfan; Freeman, Bill; Tenenbaum, Joshen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4176-343X
dc.identifier.orcidhttps://orcid.org/0000-0001-5031-6618
dc.identifier.orcidhttps://orcid.org/0000-0002-2231-7995
dc.identifier.orcidhttps://orcid.org/0000-0002-1925-2035
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record