MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Heisenberg scaling of imaging resolution by coherent enhancement

Author(s)
McConnell, Robert; Bruzewicz, Colin D.; Chiaverini, John; Sage, Jeremy M.; Low, Guang Hao; Yoder, Theodore James; Chuang, Isaac; ... Show more Show less
Thumbnail
DownloadPhysRevA.96.051801.pdf (488.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Classical imaging works by scattering photons from an object to be imaged, and achieves resolution scaling as 1/√t, with t the imaging time. By contrast, the laws of quantum mechanics allow one to utilize quantum coherence to obtain imaging resolution that can scale as quickly as 1/t – the so-called “Heisenberg limit.” However, ambiguities in the obtained signal often preclude taking full advantage of this quantum enhancement, while imaging techniques designed to be unambiguous often lose this optimal Heisenberg scaling. Here we demonstrate an imaging technique which combines unambiguous detection of the target with Heisenberg scaling of the resolution. We also demonstrate a binary search algorithm which can efficiently locate a coherent target using the technique, resolving a target trapped ion to within 0.3% of the 1/e² diameter of the excitation beam.
Date issued
2017-11
URI
http://hdl.handle.net/1721.1/112956
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review A
Publisher
American Physical Society
Citation
McConnell, Robert et al. "Heisenberg scaling of imaging resolution by coherent enhancement." Physical Review A 96, 5 (November 2017): 051801(R) © 2017 American Physical Society
Version: Final published version
ISSN
2469-9926
2469-9934

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.