Show simple item record

dc.contributor.authorMcConnell, Robert
dc.contributor.authorBruzewicz, Colin D.
dc.contributor.authorChiaverini, John
dc.contributor.authorSage, Jeremy M.
dc.contributor.authorLow, Guang Hao
dc.contributor.authorYoder, Theodore James
dc.contributor.authorChuang, Isaac
dc.date.accessioned2017-12-28T18:16:23Z
dc.date.available2017-12-28T18:16:23Z
dc.date.issued2017-11
dc.date.submitted2016-06
dc.identifier.issn2469-9926
dc.identifier.issn2469-9934
dc.identifier.urihttp://hdl.handle.net/1721.1/112956
dc.description.abstractClassical imaging works by scattering photons from an object to be imaged, and achieves resolution scaling as 1/√t, with t the imaging time. By contrast, the laws of quantum mechanics allow one to utilize quantum coherence to obtain imaging resolution that can scale as quickly as 1/t – the so-called “Heisenberg limit.” However, ambiguities in the obtained signal often preclude taking full advantage of this quantum enhancement, while imaging techniques designed to be unambiguous often lose this optimal Heisenberg scaling. Here we demonstrate an imaging technique which combines unambiguous detection of the target with Heisenberg scaling of the resolution. We also demonstrate a binary search algorithm which can efficiently locate a coherent target using the technique, resolving a target trapped ion to within 0.3% of the 1/e² diameter of the excitation beam.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Contract FA8721-05-C-0002)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevA.96.051801en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleHeisenberg scaling of imaging resolution by coherent enhancementen_US
dc.typeArticleen_US
dc.identifier.citationMcConnell, Robert et al. "Heisenberg scaling of imaging resolution by coherent enhancement." Physical Review A 96, 5 (November 2017): 051801(R) © 2017 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorLow, Guang Hao
dc.contributor.mitauthorYoder, Theodore James
dc.contributor.mitauthorChuang, Isaac
dc.relation.journalPhysical Review Aen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-11-14T22:10:13Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsMcConnell, Robert; Low, Guang Hao; Yoder, Theodore J.; Bruzewicz, Colin D.; Chuang, Isaac L.; Chiaverini, John; Sage, Jeremy M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6211-982X
dc.identifier.orcidhttps://orcid.org/0000-0001-9614-2836
dc.identifier.orcidhttps://orcid.org/0000-0001-7296-523X
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record