MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gauss quadrature for matrix inverse forms with applications

Author(s)
Li, Chengtao; Sra, Suvrit; Jegelka, Stefanie Sabrina
Thumbnail
DownloadJegelka_Gauss quadrature.pdf (374.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We present a framework for accelerating a spectrum of machine learning algorithms that require computation of bilinear inverse forms u[superscript T] A[superscript −1]u, where A is a positive definite matrix and u a given vector. Our framework is built on Gauss-type quadrature and easily scales to large, sparse matrices. Further, it allows retrospective computation of lower and upper bounds on u[superscript T] > A[superscript −1]u, which in turn accelerates several algorithms. We prove that these bounds tighten iteratively and converge at a linear (geometric) rate. To our knowledge, ours is the first work to demonstrate these key properties of Gauss-type quadrature, which is a classical and deeply studied topic. We illustrate empirical consequences of our results by using quadrature to accelerate machine learning tasks involving determinantal point processes and submodular optimization, and observe tremendous speedups in several instances.
Date issued
2016-06
URI
http://hdl.handle.net/1721.1/113000
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
International Conference on Machine Learning
Publisher
Proceedings of Machine Learning Research
Citation
Li, Chengtao, Suvrit Sra, and Stefanie Jegelka. "Gauss quadrature for matrix inverse forms with applications." International Conference on Machine Learning, 20-22 June 2016, New York, New York, PMLR, 2016.
Version: Original manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.