Show simple item record

dc.contributor.authorLi, Chengtao
dc.contributor.authorSra, Suvrit
dc.contributor.authorJegelka, Stefanie Sabrina
dc.date.accessioned2017-12-29T21:19:17Z
dc.date.available2017-12-29T21:19:17Z
dc.date.issued2016-06
dc.identifier.urihttp://hdl.handle.net/1721.1/113000
dc.description.abstractWe present a framework for accelerating a spectrum of machine learning algorithms that require computation of bilinear inverse forms u[superscript T] A[superscript −1]u, where A is a positive definite matrix and u a given vector. Our framework is built on Gauss-type quadrature and easily scales to large, sparse matrices. Further, it allows retrospective computation of lower and upper bounds on u[superscript T] > A[superscript −1]u, which in turn accelerates several algorithms. We prove that these bounds tighten iteratively and converge at a linear (geometric) rate. To our knowledge, ours is the first work to demonstrate these key properties of Gauss-type quadrature, which is a classical and deeply studied topic. We illustrate empirical consequences of our results by using quadrature to accelerate machine learning tasks involving determinantal point processes and submodular optimization, and observe tremendous speedups in several instances.en_US
dc.description.sponsorshipGoogle (Research Award)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Award 1553284)en_US
dc.language.isoen_US
dc.publisherProceedings of Machine Learning Researchen_US
dc.relation.isversionofhttp://proceedings.mlr.press/v48en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleGauss quadrature for matrix inverse forms with applicationsen_US
dc.typeArticleen_US
dc.identifier.citationLi, Chengtao, Suvrit Sra, and Stefanie Jegelka. "Gauss quadrature for matrix inverse forms with applications." International Conference on Machine Learning, 20-22 June 2016, New York, New York, PMLR, 2016.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorLi, Chengtao
dc.contributor.mitauthorSra, Suvrit
dc.contributor.mitauthorJegelka, Stefanie Sabrina
dc.relation.journalInternational Conference on Machine Learningen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsLi, Chengtao; Sra, Suvrit; Jegelka, Stefanieen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1532-3083
dc.identifier.orcidhttps://orcid.org/0000-0001-8516-4925
dc.identifier.orcidhttps://orcid.org/0000-0002-6121-9474
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record