MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanofibrous Silver-Coated Polymeric Scaffolds with Tunable Electrical Properties

Author(s)
Memic, Adnan; Aldhahri, Musab; Tamayol, Ali; Mostafalu, Pooria; Abdel-wahab, Mohamed Shaaban; Samandari, Mohamadmahdi; Moghaddam, Kamyar Mollazadeh; Annabi, Nasim; Bencherif, Sidi A.; Khademhosseini, Ali; Abdel-wahab, Mohamed; Moghaddam, Kamyar; Bencherif, Sidi; Khademhosseini, Alireza; ... Show more Show less
Thumbnail
Downloadnanomaterials-07-00063.pdf (2.109Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Electrospun micro- and nanofibrous poly(glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) substrates have been extensively used as scaffolds for engineered tissues due to their desirable mechanical properties and their tunable degradability. In this study, we fabricated micro/nanofibrous scaffolds from a PGS-PCL composite using a standard electrospinning approach and then coated them with silver (Ag) using a custom radio frequency (RF) sputtering method. The Ag coating formed an electrically conductive layer around the fibers and decreased the pore size. The thickness of the Ag coating could be controlled, thereby tailoring the conductivity of the substrate. The flexible, stretchable patches formed excellent conformal contact with surrounding tissues and possessed excellent pattern-substrate fidelity. In vitro studies confirmed the platform’s biocompatibility and biodegradability. Finally, the potential controlled release of the Ag coating from the composite fibrous scaffolds could be beneficial for many clinical applications. Keywords: electrospinning; electrical properties; nanocoatings; flexible electronics
Date issued
2017-03
URI
http://hdl.handle.net/1721.1/113336
Department
Institute for Medical Engineering and Science; Harvard University--MIT Division of Health Sciences and Technology
Journal
Nanomaterials
Publisher
MDPI AG
Citation
Memic, Adnan et al. "Nanofibrous Silver-Coated Polymeric Scaffolds with Tunable Electrical Properties." Nanomaterials 7, 3 (2017 March): 63 © 2017 The Author(s)
Version: Final published version
ISSN
2079-4991

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.