Show simple item record

dc.contributor.authorMemic, Adnan
dc.contributor.authorAldhahri, Musab
dc.contributor.authorTamayol, Ali
dc.contributor.authorMostafalu, Pooria
dc.contributor.authorAbdel-wahab, Mohamed Shaaban
dc.contributor.authorSamandari, Mohamadmahdi
dc.contributor.authorMoghaddam, Kamyar Mollazadeh
dc.contributor.authorAnnabi, Nasim
dc.contributor.authorBencherif, Sidi A.
dc.contributor.authorKhademhosseini, Ali
dc.contributor.authorAbdel-wahab, Mohamed
dc.contributor.authorMoghaddam, Kamyar
dc.contributor.authorBencherif, Sidi
dc.contributor.authorKhademhosseini, Alireza
dc.date.accessioned2018-01-29T19:43:34Z
dc.date.available2018-01-29T19:43:34Z
dc.date.issued2017-03
dc.date.submitted2017-01
dc.identifier.issn2079-4991
dc.identifier.urihttp://hdl.handle.net/1721.1/113336
dc.description.abstractElectrospun micro- and nanofibrous poly(glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) substrates have been extensively used as scaffolds for engineered tissues due to their desirable mechanical properties and their tunable degradability. In this study, we fabricated micro/nanofibrous scaffolds from a PGS-PCL composite using a standard electrospinning approach and then coated them with silver (Ag) using a custom radio frequency (RF) sputtering method. The Ag coating formed an electrically conductive layer around the fibers and decreased the pore size. The thickness of the Ag coating could be controlled, thereby tailoring the conductivity of the substrate. The flexible, stretchable patches formed excellent conformal contact with surrounding tissues and possessed excellent pattern-substrate fidelity. In vitro studies confirmed the platform’s biocompatibility and biodegradability. Finally, the potential controlled release of the Ag coating from the composite fibrous scaffolds could be beneficial for many clinical applications. Keywords: electrospinning; electrical properties; nanocoatings; flexible electronicsen_US
dc.publisherMDPI AGen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/nano7030063en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleNanofibrous Silver-Coated Polymeric Scaffolds with Tunable Electrical Propertiesen_US
dc.typeArticleen_US
dc.identifier.citationMemic, Adnan et al. "Nanofibrous Silver-Coated Polymeric Scaffolds with Tunable Electrical Properties." Nanomaterials 7, 3 (2017 March): 63 © 2017 The Author(s)en_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.mitauthorKhademhosseini, Alireza
dc.relation.journalNanomaterialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-01-24T21:05:07Z
dspace.orderedauthorsMemic, Adnan; Aldhahri, Musab; Tamayol, Ali; Mostafalu, Pooria; Abdel-wahab, Mohamed; Samandari, Mohamadmahdi; Moghaddam, Kamyar; Annabi, Nasim; Bencherif, Sidi; Khademhosseini, Alien_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record