MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fractional Gaussian fields: A survey

Author(s)
Lodhia, Asad Iqbal; Sheffield, Scott Roger; Sun, Xin; Watson, Samuel Stewart
Thumbnail
Download1407.5598.pdf (3.264Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We discuss a family of random fields indexed by a parameter s ∈ R which we call the fractional Gaussian fields, given by FGF[subscript s](R[superscript d]) = (-Δ)[superscript -s/2]W, where W is a white noise on R[superscript d] and (-Δ)[superscript -s/2] is the fractional Laplacian. These fields can also be parameterized by their Hurst parameter H = s-d/2. In one dimension, examples of FGF[subscript s] processes include Brownian motion (s = 1) and fractional Brownian motion (1/2 < s < 3/2). Examples in arbitrary dimension include white noise (s = 0), the Gaussian free field (s = 1), the bi-Laplacian Gaussian field (s = 2), the log-correlated Gaussian field (s = d/2), Lévy's Brownian motion (s = d/2+1/2), and multidimensional fractional Brownian motion (d/2 < s < d/2+1). These fields have applications to statistical physics, early-universe cosmology, finance, quantum field theory, image processing, and other disciplines. We present an overview of fractional Gaussian fields including covariance formulas, Gibbs properties, spherical coordinate decompositions, restrictions to linear subspaces, local set theorems, and other basic results. We also define a discrete fractional Gaussian field and explain how the FGF[subscript s] with s ∈ (0, 1) can be understood as a long range Gaussian free field in which the potential theory of Brownian motion is replaced by that of an isotropic 2s-stable Lévy process.
Date issued
2016-02
URI
http://hdl.handle.net/1721.1/115331
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Probability Surveys
Publisher
Institute of Mathematical Statistics
Citation
Lodhia, Asad, et al. “Fractional Gaussian Fields: A Survey.” Probability Surveys, vol. 13, no. 0, 2016, pp. 1–56.
Version: Author's final manuscript
ISSN
1549-5787

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.