Show simple item record

dc.contributor.authorLodhia, Asad Iqbal
dc.contributor.authorSheffield, Scott Roger
dc.contributor.authorSun, Xin
dc.contributor.authorWatson, Samuel Stewart
dc.date.accessioned2018-05-11T17:37:12Z
dc.date.available2018-05-11T17:37:12Z
dc.date.issued2016-02
dc.date.submitted2014-09
dc.identifier.issn1549-5787
dc.identifier.urihttp://hdl.handle.net/1721.1/115331
dc.description.abstractWe discuss a family of random fields indexed by a parameter s ∈ R which we call the fractional Gaussian fields, given by FGF[subscript s](R[superscript d]) = (-Δ)[superscript -s/2]W, where W is a white noise on R[superscript d] and (-Δ)[superscript -s/2] is the fractional Laplacian. These fields can also be parameterized by their Hurst parameter H = s-d/2. In one dimension, examples of FGF[subscript s] processes include Brownian motion (s = 1) and fractional Brownian motion (1/2 < s < 3/2). Examples in arbitrary dimension include white noise (s = 0), the Gaussian free field (s = 1), the bi-Laplacian Gaussian field (s = 2), the log-correlated Gaussian field (s = d/2), Lévy's Brownian motion (s = d/2+1/2), and multidimensional fractional Brownian motion (d/2 < s < d/2+1). These fields have applications to statistical physics, early-universe cosmology, finance, quantum field theory, image processing, and other disciplines. We present an overview of fractional Gaussian fields including covariance formulas, Gibbs properties, spherical coordinate decompositions, restrictions to linear subspaces, local set theorems, and other basic results. We also define a discrete fractional Gaussian field and explain how the FGF[subscript s] with s ∈ (0, 1) can be understood as a long range Gaussian free field in which the potential theory of Brownian motion is replaced by that of an isotropic 2s-stable Lévy process.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS 1209044)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Program (Award 1122374)en_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1214/14-PS243en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleFractional Gaussian fields: A surveyen_US
dc.typeArticleen_US
dc.identifier.citationLodhia, Asad, et al. “Fractional Gaussian Fields: A Survey.” Probability Surveys, vol. 13, no. 0, 2016, pp. 1–56.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorLodhia, Asad Iqbal
dc.contributor.mitauthorSheffield, Scott Roger
dc.contributor.mitauthorSun, Xin
dc.contributor.mitauthorWatson, Samuel Stewart
dc.relation.journalProbability Surveysen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-01T16:44:24Z
dspace.orderedauthorsLodhia, Asad; Sheffield, Scott; Sun, Xin; Watson, Samuel S.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6677-5349
dc.identifier.orcidhttps://orcid.org/0000-0002-5951-4933
dc.identifier.orcidhttps://orcid.org/0000-0002-8579-1686
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record