MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enabling Privacy-Preserving GWASs in Heterogeneous Human Populations

Author(s)
Sahinalp, Cenk; Simmons, Sean Kenneth; Berger Leighton, Bonnie
Thumbnail
Download1-s2.0-S2405471216301211-main.pdf (1.218Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The proliferation of large genomic databases offers the potential to perform increasingly larger-scale genome-wide association studies (GWASs). Due to privacy concerns, however, access to these data is limited, greatly reducing their usefulness for research. Here, we introduce a computational framework for performing GWASs that adapts principles of differential privacy-a cryptographic theory that facilitates secure analysis of sensitive data-to both protect private phenotype information (e.g., disease status) and correct for population stratification. This framework enables us to produce privacy-preserving GWAS results based on EIGENSTRAT and linear mixed model (LMM)-based statistics, both of which correct for population stratification. We test our differentially private statistics, PrivSTRAT and PrivLMM, on simulated and real GWAS datasets and find they are able to protect privacy while returning meaningful results. Our framework can be used to securely query private genomic datasets to discover which specific genomic alterations may be associated with a disease, thus increasing the availability of these valuable datasets.
Date issued
2016-07
URI
http://hdl.handle.net/1721.1/115425
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Mathematics
Journal
Cell Systems
Publisher
Elsevier
Citation
Simmons, Sean et al. “Enabling Privacy-Preserving GWASs in Heterogeneous Human Populations.” Cell Systems 3, 1 (July 2016): 54–61
Version: Final published version
ISSN
2405-4712

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.