Show simple item record

dc.contributor.authorSahinalp, Cenk
dc.contributor.authorSimmons, Sean Kenneth
dc.contributor.authorBerger Leighton, Bonnie
dc.date.accessioned2018-05-17T15:55:31Z
dc.date.available2018-05-17T15:55:31Z
dc.date.issued2016-07
dc.date.submitted2016-04
dc.identifier.issn2405-4712
dc.identifier.urihttp://hdl.handle.net/1721.1/115425
dc.description.abstractThe proliferation of large genomic databases offers the potential to perform increasingly larger-scale genome-wide association studies (GWASs). Due to privacy concerns, however, access to these data is limited, greatly reducing their usefulness for research. Here, we introduce a computational framework for performing GWASs that adapts principles of differential privacy-a cryptographic theory that facilitates secure analysis of sensitive data-to both protect private phenotype information (e.g., disease status) and correct for population stratification. This framework enables us to produce privacy-preserving GWAS results based on EIGENSTRAT and linear mixed model (LMM)-based statistics, both of which correct for population stratification. We test our differentially private statistics, PrivSTRAT and PrivLMM, on simulated and real GWAS datasets and find they are able to protect privacy while returning meaningful results. Our framework can be used to securely query private genomic datasets to discover which specific genomic alterations may be associated with a disease, thus increasing the availability of these valuable datasets.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant GM108348)en_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.CELS.2016.04.013en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceElsevieren_US
dc.titleEnabling Privacy-Preserving GWASs in Heterogeneous Human Populationsen_US
dc.typeArticleen_US
dc.identifier.citationSimmons, Sean et al. “Enabling Privacy-Preserving GWASs in Heterogeneous Human Populations.” Cell Systems 3, 1 (July 2016): 54–61en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorSimmons, Sean Kenneth
dc.contributor.mitauthorBerger Leighton, Bonnie
dc.relation.journalCell Systemsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-16T16:31:47Z
dspace.orderedauthorsSimmons, Sean; Sahinalp, Cenk; Berger, Bonnieen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1537-4000
dc.identifier.orcidhttps://orcid.org/0000-0002-2724-7228
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record