MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamical zeta functions for Anosov flows via microlocal analysis

Author(s)
Dyatlov, Semyon; Dyatlov, Semen
Thumbnail
Download1306.4203.pdf (648.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The purpose of this paper is to give a short microlocal proof of the meromorphic continuation of the Ruelle zeta function for C ∞ Anosov flows. More general results have been recently proved by Giulietti-Liverani-Pollicott [13] but our approach is different and is based on the study of the generator of the flow as a semiclassical differential operator.
Date issued
2016
URI
http://hdl.handle.net/1721.1/115500
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Annales scientifiques de l'École normale supérieure
Publisher
Societe Mathematique de France
Citation
Dyatlov, Semyon, and Maciej Zworski. “Dynamical Zeta Functions for Anosov Flows via Microlocal Analysis.” Annales Scientifiques de l’École Normale Supérieure 49, 3 (2016): 543–577 © 2016 Société Mathématique de France
Version: Original manuscript
ISSN
0012-9593
1873-2151

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.