Show simple item record

dc.contributor.authorDyatlov, Semyon
dc.contributor.authorDyatlov, Semen
dc.date.accessioned2018-05-18T18:38:13Z
dc.date.available2018-05-18T18:38:13Z
dc.date.issued2016
dc.identifier.issn0012-9593
dc.identifier.issn1873-2151
dc.identifier.urihttp://hdl.handle.net/1721.1/115500
dc.description.abstractThe purpose of this paper is to give a short microlocal proof of the meromorphic continuation of the Ruelle zeta function for C ∞ Anosov flows. More general results have been recently proved by Giulietti-Liverani-Pollicott [13] but our approach is different and is based on the study of the generator of the flow as a semiclassical differential operator.en_US
dc.publisherSociete Mathematique de Franceen_US
dc.relation.isversionofhttp://dx.doi.org/10.24033/ASENS.2290en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleDynamical zeta functions for Anosov flows via microlocal analysisen_US
dc.typeArticleen_US
dc.identifier.citationDyatlov, Semyon, and Maciej Zworski. “Dynamical Zeta Functions for Anosov Flows via Microlocal Analysis.” Annales Scientifiques de l’École Normale Supérieure 49, 3 (2016): 543–577 © 2016 Société Mathématique de Franceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorDyatlov, Semen
dc.relation.journalAnnales scientifiques de l'École normale supérieureen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-18T17:20:48Z
dspace.orderedauthorsDyatlov, Semyon; Zworski, Maciejen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6594-7604
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record