MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A sharp Schrödinger maximal estimate in R[superscript 2]

Author(s)
Du, Xiumin; Li, Xiaochun; Guth, Lawrence
Thumbnail
Download1612.08946.pdf (372.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We show that lim[subscript t→0] e[superscript itΔ]f(x) = f(x) almost everywhere for all f ∈ H[superscript s](R[superscript 2]) provided that s > 1/3. This result is sharp up to the endpoint. The proof uses polynomial partitioning and decoupling.
Date issued
2017-08
URI
http://hdl.handle.net/1721.1/115564
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Annals of Mathematics
Publisher
Annals of Mathematics, Princeton U
Citation
Du, Xiumin, et al. “A Sharp Schrödinger Maximal Estimate in R[superscript 2].” Annals of Mathematics, vol. 186, no. 2, Sept. 2017, pp. 607–40.
Version: Author's final manuscript
ISSN
0003-486X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.