A sharp Schrödinger maximal estimate in R[superscript 2]
Author(s)
Du, Xiumin; Li, Xiaochun; Guth, Lawrence
Download1612.08946.pdf (372.5Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
We show that lim[subscript t→0] e[superscript itΔ]f(x) = f(x) almost everywhere for all f ∈ H[superscript s](R[superscript 2]) provided that s > 1/3. This result is sharp up to the endpoint. The proof uses polynomial partitioning and decoupling.
Date issued
2017-08Department
Massachusetts Institute of Technology. Department of MathematicsJournal
Annals of Mathematics
Publisher
Annals of Mathematics, Princeton U
Citation
Du, Xiumin, et al. “A Sharp Schrödinger Maximal Estimate in R[superscript 2].” Annals of Mathematics, vol. 186, no. 2, Sept. 2017, pp. 607–40.
Version: Author's final manuscript
ISSN
0003-486X