Show simple item record

dc.contributor.authorDu, Xiumin
dc.contributor.authorLi, Xiaochun
dc.contributor.authorGuth, Lawrence
dc.date.accessioned2018-05-22T18:20:39Z
dc.date.available2018-05-22T18:20:39Z
dc.date.issued2017-08
dc.date.submitted2017-06
dc.identifier.issn0003-486X
dc.identifier.urihttp://hdl.handle.net/1721.1/115564
dc.description.abstractWe show that lim[subscript t→0] e[superscript itΔ]f(x) = f(x) almost everywhere for all f ∈ H[superscript s](R[superscript 2]) provided that s > 1/3. This result is sharp up to the endpoint. The proof uses polynomial partitioning and decoupling.en_US
dc.description.sponsorshipSimons Foundation (Investor Grant)en_US
dc.publisherAnnals of Mathematics, Princeton Uen_US
dc.relation.isversionofhttp://dx.doi.org/10.4007/ANNALS.2017.186.2.5en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleA sharp Schrödinger maximal estimate in R[superscript 2]en_US
dc.typeArticleen_US
dc.identifier.citationDu, Xiumin, et al. “A Sharp Schrödinger Maximal Estimate in R[superscript 2].” Annals of Mathematics, vol. 186, no. 2, Sept. 2017, pp. 607–40.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.mitauthorGuth, Lawrence
dc.relation.journalAnnals of Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-22T15:57:15Z
dspace.orderedauthorsDu, Xiumin; Guth, Larry; Li, Xiaochunen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1302-8657
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record