dc.contributor.author | Du, Xiumin | |
dc.contributor.author | Li, Xiaochun | |
dc.contributor.author | Guth, Lawrence | |
dc.date.accessioned | 2018-05-22T18:20:39Z | |
dc.date.available | 2018-05-22T18:20:39Z | |
dc.date.issued | 2017-08 | |
dc.date.submitted | 2017-06 | |
dc.identifier.issn | 0003-486X | |
dc.identifier.uri | http://hdl.handle.net/1721.1/115564 | |
dc.description.abstract | We show that lim[subscript t→0] e[superscript itΔ]f(x) = f(x) almost everywhere for all f ∈ H[superscript s](R[superscript 2]) provided that s > 1/3. This result is sharp up to the endpoint. The proof uses polynomial partitioning and decoupling. | en_US |
dc.description.sponsorship | Simons Foundation (Investor Grant) | en_US |
dc.publisher | Annals of Mathematics, Princeton U | en_US |
dc.relation.isversionof | http://dx.doi.org/10.4007/ANNALS.2017.186.2.5 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | A sharp Schrödinger maximal estimate in R[superscript 2] | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Du, Xiumin, et al. “A Sharp Schrödinger Maximal Estimate in R[superscript 2].” Annals of Mathematics, vol. 186, no. 2, Sept. 2017, pp. 607–40. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.contributor.mitauthor | Guth, Lawrence | |
dc.relation.journal | Annals of Mathematics | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-05-22T15:57:15Z | |
dspace.orderedauthors | Du, Xiumin; Guth, Larry; Li, Xiaochun | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-1302-8657 | |
mit.license | OPEN_ACCESS_POLICY | en_US |