MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Singular Degree of a Rational Matrix Pseudodifferential Operator

Author(s)
Carpentier, Sylvain; De Sole, Alberto; Kac, Victor
Thumbnail
Download1308.2647.pdf (297.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In our previous work, we studied minimal fractional decompositions of a rational matrix pseudodifferential operator: H = AB[superscript -1], where Aand B are matrix differential operators, and B is nondegenerate of minimal possible degree deg(B). In the present paper, we introduce the singular degree sdeg(H)=deg(B), and show that, for an arbitrary rational expression H =∑[subscript α] A[subscript 1][superscript ] (B[subscript 1][superscript α])[superscript -1] ⋯ A[subscript n][superscript α] (B[subscript n][superscript α])[superscript -1], we have sdeg(H) ≤∑[subscript α,i] deg(B[subscript i][superscript α]). If the equality holds, we call such an expression minimal. We study the properties of the singular degree and of minimal rational expressions. These results are important for the computations involved in the Lenard-Magri scheme of integrability.
Date issued
2014-06
URI
http://hdl.handle.net/1721.1/115958
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
International Mathematics Research Notices
Publisher
Oxford University Press (OUP)
Citation
Carpentier, Sylvain, et al. “Singular Degree of a Rational Matrix Pseudodifferential Operator.” International Mathematics Research Notices, vol. 2015, no. 13, 2015, pp. 5162–95. © 2014 The Authors
Version: Original manuscript
ISSN
1073-7928
1687-0247

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.