MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inverting the Hopf map

Author(s)
Andrews, Michael Joseph; Miller, Haynes R
Thumbnail
Download1710.08018.pdf (479.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We calculate the η-localization of the motivic stable homotopy ring over C, confirming a conjecture of Guillou and Isaksen. Our approach is via the motivic Adams-Novikov spectral sequence. In fact, work of Hu, Kriz and Ormsby implies that it suffices to compute the corresponding localization of the classical Adams-Novikov E₂-term, and this is what we do. Guillou and Isaksen also propose a pattern of differentials in the localized motivic classical Adams spectral sequence, which we verify using a method first explored by Novikov.
Date issued
2017-11
URI
http://hdl.handle.net/1721.1/116020
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Topology
Publisher
Oxford University Press (OUP)
Citation
Andrews, Michael and Haynes Miller. “Inverting the Hopf Map.” Journal of Topology 10, 4 (November 2017): 1145–1168 © 2017 London Mathematical Society
Version: Author's final manuscript
ISSN
1753-8416
1753-8424

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.