Show simple item record

dc.contributor.authorAndrews, Michael Joseph
dc.contributor.authorMiller, Haynes R
dc.date.accessioned2018-05-31T14:20:55Z
dc.date.available2018-05-31T14:20:55Z
dc.date.issued2017-11
dc.identifier.issn1753-8416
dc.identifier.issn1753-8424
dc.identifier.urihttp://hdl.handle.net/1721.1/116020
dc.description.abstractWe calculate the η-localization of the motivic stable homotopy ring over C, confirming a conjecture of Guillou and Isaksen. Our approach is via the motivic Adams-Novikov spectral sequence. In fact, work of Hu, Kriz and Ormsby implies that it suffices to compute the corresponding localization of the classical Adams-Novikov E₂-term, and this is what we do. Guillou and Isaksen also propose a pattern of differentials in the localized motivic classical Adams spectral sequence, which we verify using a method first explored by Novikov.en_US
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1112/topo.12034en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleInverting the Hopf mapen_US
dc.typeArticleen_US
dc.identifier.citationAndrews, Michael and Haynes Miller. “Inverting the Hopf Map.” Journal of Topology 10, 4 (November 2017): 1145–1168 © 2017 London Mathematical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorAndrews, Michael Joseph
dc.contributor.mitauthorMiller, Haynes R
dc.relation.journalJournal of Topologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-25T19:12:39Z
dspace.orderedauthorsAndrews, Michael; Miller, Haynesen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8702-1127
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record