dc.contributor.author | Andrews, Michael Joseph | |
dc.contributor.author | Miller, Haynes R | |
dc.date.accessioned | 2018-05-31T14:20:55Z | |
dc.date.available | 2018-05-31T14:20:55Z | |
dc.date.issued | 2017-11 | |
dc.identifier.issn | 1753-8416 | |
dc.identifier.issn | 1753-8424 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/116020 | |
dc.description.abstract | We calculate the η-localization of the motivic stable homotopy ring over C, confirming a conjecture of Guillou and Isaksen. Our approach is via the motivic Adams-Novikov spectral sequence. In fact, work of Hu, Kriz and Ormsby implies that it suffices to compute the corresponding localization of the classical Adams-Novikov E₂-term, and this is what we do. Guillou and Isaksen also propose a pattern of differentials in the localized motivic classical Adams spectral sequence, which we verify using a method first explored by Novikov. | en_US |
dc.publisher | Oxford University Press (OUP) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1112/topo.12034 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Inverting the Hopf map | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Andrews, Michael and Haynes Miller. “Inverting the Hopf Map.” Journal of Topology 10, 4 (November 2017): 1145–1168 © 2017 London Mathematical Society | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Andrews, Michael Joseph | |
dc.contributor.mitauthor | Miller, Haynes R | |
dc.relation.journal | Journal of Topology | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-05-25T19:12:39Z | |
dspace.orderedauthors | Andrews, Michael; Miller, Haynes | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-8702-1127 | |
mit.license | OPEN_ACCESS_POLICY | en_US |