Leveraging Diversity and Sparsity in Blind Deconvolution
Author(s)
Ahmed, Ali; Demanet, Laurent
Download1610.06098.pdf (1.404Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
IEEE This paper considers recovering L-dimensional vectors w, and x1, x2,...,xN from their circular convolutions yn = w * x [subscript n]; n = 1, 2, 3,...,N. The vector w is assumed to be S-sparse in a known basis that is spread out in the Fourier domain, and each input x[subscript n] is a member of a known K-dimensional random subspace. We prove that whenever K + S log[superscript 2]S ≲ L/log[superscript 4](LN), the problem can be solved effectively by using only the nuclear-norm minimization as the convex relaxation, as long as the inputs are sufficiently diverse and obey N ≳ log[superscript 2](LN). By "diverse inputs", we mean that the x[subscript n]'s belong to different, generic subspaces. To our knowledge, this is the first theoretical result on blind deconvolution where the subspace to which w belongs is not fixed, but needs to be determined. We discuss the result in the context of multipath channel estimation in wireless communications. Both the fading coefficients, and the delays in the channel impulse response w are unknown. The encoder codes the K-dimensional message vectors randomly and then transmits coded messages x[subscript n]'s over a fixed channel one after the other. The decoder then discovers all of the messages and the channel response when the number of samples taken for each received message are roughly greater than (K + Slog[superscript 2]S) log[superscript 4](LN), and the number of messages is roughly at least log2(LN).
Date issued
2018-06Department
Massachusetts Institute of Technology. Department of MathematicsJournal
IEEE Transactions on Information Theory
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Ahmed, Ali and Laurent Demanet. “Leveraging Diversity and Sparsity in Blind Deconvolution.” IEEE Transactions on Information Theory (2018) 64, 6: 3975 - 4000 © IEEE
Version: Original manuscript
ISSN
0018-9448
1557-9654