Show simple item record

dc.contributor.authorAhmed, Ali
dc.contributor.authorDemanet, Laurent
dc.date.accessioned2018-06-01T18:35:55Z
dc.date.available2018-06-01T18:35:55Z
dc.date.issued2018-06
dc.date.submitted2018-01
dc.identifier.issn0018-9448
dc.identifier.issn1557-9654
dc.identifier.urihttp://hdl.handle.net/1721.1/116040
dc.description.abstractIEEE This paper considers recovering L-dimensional vectors w, and x1, x2,...,xN from their circular convolutions yn = w * x [subscript n]; n = 1, 2, 3,...,N. The vector w is assumed to be S-sparse in a known basis that is spread out in the Fourier domain, and each input x[subscript n] is a member of a known K-dimensional random subspace. We prove that whenever K + S log[superscript 2]S ≲ L/log[superscript 4](LN), the problem can be solved effectively by using only the nuclear-norm minimization as the convex relaxation, as long as the inputs are sufficiently diverse and obey N ≳ log[superscript 2](LN). By "diverse inputs", we mean that the x[subscript n]'s belong to different, generic subspaces. To our knowledge, this is the first theoretical result on blind deconvolution where the subspace to which w belongs is not fixed, but needs to be determined. We discuss the result in the context of multipath channel estimation in wireless communications. Both the fading coefficients, and the delays in the channel impulse response w are unknown. The encoder codes the K-dimensional message vectors randomly and then transmits coded messages x[subscript n]'s over a fixed channel one after the other. The decoder then discovers all of the messages and the channel response when the number of samples taken for each received message are roughly greater than (K + Slog[superscript 2]S) log[superscript 4](LN), and the number of messages is roughly at least log2(LN).en_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/TIT.2017.2788444en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleLeveraging Diversity and Sparsity in Blind Deconvolutionen_US
dc.typeArticleen_US
dc.identifier.citationAhmed, Ali and Laurent Demanet. “Leveraging Diversity and Sparsity in Blind Deconvolution.” IEEE Transactions on Information Theory (2018) 64, 6: 3975 - 4000 © IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorAhmed, Ali
dc.contributor.mitauthorDemanet, Laurent
dc.relation.journalIEEE Transactions on Information Theoryen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-17T16:15:58Z
dspace.orderedauthorsAhmed, Ali; Demanet, Laurenten_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5047-0604
dc.identifier.orcidhttps://orcid.org/0000-0001-7052-5097
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record