MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

VANISHING OF THE NEGATIVE HOMOTOPY -THEORY OF QUOTIENT SINGULARITIES

Author(s)
Trigo Neri Tabuada, Goncalo Jorge
Thumbnail
Download1608.08213.pdf (165.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Making use of Gruson–Raynaud’s technique of ‘platification par éclatement’, Kerz and Strunk proved that the negative homotopy -theory groups of a Noetherian scheme of Krull dimension vanish below . In this article, making use of noncommutative algebraic geometry, we improve this result in the case of quotient singularities by proving that the negative homotopy -theory groups vanish below . Furthermore, in the case of cyclic quotient singularities, we provide an explicit ‘upper bound’ for the first negative homotopy -theory group.
Date issued
2017-05
URI
http://hdl.handle.net/1721.1/116059
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of the Institute of Mathematics of Jussieu
Publisher
Cambridge University Press (CUP)
Citation
Tabuada, Gonçalo. “VANISHING OF THE NEGATIVE HOMOTOPY -THEORY OF QUOTIENT SINGULARITIES.” Journal of the Institute of Mathematics of Jussieu (May 2017): 1–9 © 2017 Cambridge University Press
Version: Original manuscript
ISSN
1474-7480
1475-3030

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.