Show simple item record

dc.contributor.authorTrigo Neri Tabuada, Goncalo Jorge
dc.date.accessioned2018-06-04T17:17:51Z
dc.date.available2018-06-04T17:17:51Z
dc.date.issued2017-05
dc.date.submitted2017-04
dc.identifier.issn1474-7480
dc.identifier.issn1475-3030
dc.identifier.urihttp://hdl.handle.net/1721.1/116059
dc.description.abstractMaking use of Gruson–Raynaud’s technique of ‘platification par éclatement’, Kerz and Strunk proved that the negative homotopy -theory groups of a Noetherian scheme of Krull dimension vanish below . In this article, making use of noncommutative algebraic geometry, we improve this result in the case of quotient singularities by proving that the negative homotopy -theory groups vanish below . Furthermore, in the case of cyclic quotient singularities, we provide an explicit ‘upper bound’ for the first negative homotopy -theory group.en_US
dc.publisherCambridge University Press (CUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1017/S1474748017000172en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleVANISHING OF THE NEGATIVE HOMOTOPY -THEORY OF QUOTIENT SINGULARITIESen_US
dc.typeArticleen_US
dc.identifier.citationTabuada, Gonçalo. “VANISHING OF THE NEGATIVE HOMOTOPY -THEORY OF QUOTIENT SINGULARITIES.” Journal of the Institute of Mathematics of Jussieu (May 2017): 1–9 © 2017 Cambridge University Pressen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorTrigo Neri Tabuada, Goncalo Jorge
dc.relation.journalJournal of the Institute of Mathematics of Jussieuen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-31T16:39:50Z
dspace.orderedauthorsTabuada, Gonçaloen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5558-9236
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record