Show simple item record

dc.contributor.authorStewart, Alistair
dc.contributor.authorDiakonikolas, Ilias
dc.contributor.authorKamath, Gautam Chetan
dc.contributor.authorKane, Daniel M
dc.contributor.authorLi, Jerry Zheng
dc.contributor.authorMoitra, Ankur
dc.date.accessioned2018-06-11T17:27:24Z
dc.date.available2018-06-11T17:27:24Z
dc.date.issued2018-01
dc.identifier.issn0368-4245
dc.identifier.urihttp://hdl.handle.net/1721.1/116214
dc.description.abstractWe study the fundamental problem of learning the parameters of a high-dimensional Gaussian in the presence of noise | where an "-fraction of our samples were chosen by an adversary. We give robust estimators that achieve estimation error O(ϵ) in the total variation distance, which is optimal up to a universal constant that is independent of the dimension. In the case where just the mean is unknown, our robustness guarantee is optimal up to a factor of p 2 and the running time is polynomial in d and 1/ϵ. When both the mean and covariance are unknown, the running time is polynomial in d and quasipolynomial in 1/ϵ. Moreover all of our algorithms require only a polynomial number of samples. Our work shows that the same sorts of error guarantees that were established over fifty years ago in the one-dimensional setting can also be achieved by efficient algorithms in high-dimensional settings.en_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/1.9781611975031.171en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSIAMen_US
dc.titleRobustly Learning a Gaussian: Getting Optimal Error, Efficientlyen_US
dc.typeArticleen_US
dc.identifier.citationDiakonikolas, Ilias, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and Alistair Stewart. “Robustly Learning a Gaussian: Getting Optimal Error, Efficiently.” Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (January 2018): 2683–2702.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorDiakonikolas, Ilias
dc.contributor.mitauthorKamath, Gautam Chetan
dc.contributor.mitauthorKane, Daniel M
dc.contributor.mitauthorLi, Jerry Zheng
dc.contributor.mitauthorMoitra, Ankur
dc.relation.journalProceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithmsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-29T13:19:50Z
dspace.orderedauthorsDiakonikolas, Ilias; Kamath, Gautam; Kane, Daniel M.; Li, Jerry; Moitra, Ankur; Stewart, Alistairen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0048-2559
dc.identifier.orcidhttps://orcid.org/0000-0002-9937-0049
dc.identifier.orcidhttps://orcid.org/0000-0001-7047-0495
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record