Show simple item record

dc.contributor.authorKoch, Christopher
dc.contributor.authorKonieczka, Jay
dc.contributor.authorDelorey, Toni
dc.contributor.authorSocha, Amanda
dc.contributor.authorDavis, Kathleen
dc.contributor.authorKnaack, Sara A.
dc.contributor.authorThompson, Dawn
dc.contributor.authorO'Shea, Erin K.
dc.contributor.authorRegev, Aviv
dc.contributor.authorRoy, Sushmita
dc.contributor.authorLyons, Ana M.
dc.date.accessioned2018-07-02T20:01:10Z
dc.date.available2018-07-02T20:01:10Z
dc.date.issued2017-05
dc.identifier.issn2405-4712
dc.identifier.urihttp://hdl.handle.net/1721.1/116736
dc.description.abstractChanges in transcriptional regulatory networks can significantly contribute to species evolution and adaptation. However, identification of genome-scale regulatory networks is an open challenge, especially in non-model organisms. Here, we introduce multi-species regulatory network learning (MRTLE), a computational approach that uses phylogenetic structure, sequence-specific motifs, and transcriptomic data, to infer the regulatory networks in different species. Using simulated data from known networks and transcriptomic data from six divergent yeasts, we demonstrate that MRTLE predicts networks with greater accuracy than existing methods because it incorporates phylogenetic information. We used MRTLE to infer the structure of the transcriptional networks that control the osmotic stress responses of divergent, non-model yeast species and then validated our predictions experimentally. Interrogating these networks reveals that gene duplication promotes network divergence across evolution. Taken together, our approach facilitates study of regulatory network evolutionary dynamics across multiple poorly studied species. Keywords: regulatory networks; network inference; evolution of gene regulatory networks; evolution of stress response; yeast; probabilistic graphical model; phylogeny; comparative functional genomicsen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DBI-1350677)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01CA119176-01)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP1OD003958-01)en_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.CELS.2017.04.010en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleInference and Evolutionary Analysis of Genome-Scale Regulatory Networks in Large Phylogeniesen_US
dc.typeArticleen_US
dc.identifier.citationKoch, Christopher et al. “Inference and Evolutionary Analysis of Genome-Scale Regulatory Networks in Large Phylogenies.” Cell Systems 4, 5 (May 2017): 543–558 © 2017 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.mitauthorLyons, Ana M.
dc.relation.journalCell Systemsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-07-02T19:17:10Z
dspace.orderedauthorsKoch, Christopher; Konieczka, Jay; Delorey, Toni; Lyons, Ana; Socha, Amanda; Davis, Kathleen; Knaack, Sara A.; Thompson, Dawn; O'Shea, Erin K.; Regev, Aviv; Roy, Sushmitaen_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record