Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing
Author(s)
Soenksen Martinez, Luis Ruben; Kassis, Timothy; Noh, Minkyun; Griffith, Linda G; Trumper, David L
Downloadc7lc01223c.pdf (4.936Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.
Date issued
2018-02Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Research Laboratory of ElectronicsJournal
Lab on a Chip
Publisher
Royal Society of Chemistry (RSC)
Citation
Soenksen, L. R. et al. “Closed-Loop Feedback Control for Microfluidic Systems through Automated Capacitive Fluid Height Sensing.” Lab on a Chip 18, 6 (2018): 902–914 © 2018 Royal Society of Chemistry
Version: Final published version
ISSN
1473-0197
1473-0189