Show simple item record

dc.contributor.authorSoenksen Martinez, Luis Ruben
dc.contributor.authorKassis, Timothy
dc.contributor.authorNoh, Minkyun
dc.contributor.authorGriffith, Linda G
dc.contributor.authorTrumper, David L
dc.date.accessioned2018-07-11T15:17:13Z
dc.date.available2018-07-11T15:17:13Z
dc.date.issued2018-02
dc.date.submitted2017-11
dc.identifier.issn1473-0197
dc.identifier.issn1473-0189
dc.identifier.urihttp://hdl.handle.net/1721.1/116892
dc.description.abstractPrecise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (Award W911NF-12-2-0039)en_US
dc.publisherRoyal Society of Chemistry (RSC)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/C7LC01223Cen_US
dc.rightsCreative Commons Attribution-NonCommercial 3.0 Unporteden_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleClosed-loop feedback control for microfluidic systems through automated capacitive fluid height sensingen_US
dc.typeArticleen_US
dc.identifier.citationSoenksen, L. R. et al. “Closed-Loop Feedback Control for Microfluidic Systems through Automated Capacitive Fluid Height Sensing.” Lab on a Chip 18, 6 (2018): 902–914 © 2018 Royal Society of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorSoenksen Martinez, Luis Ruben
dc.contributor.mitauthorKassis, Timothy
dc.contributor.mitauthorNoh, Minkyun
dc.contributor.mitauthorGriffith, Linda G
dc.contributor.mitauthorTrumper, David L
dc.relation.journalLab on a Chipen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-07-11T14:43:32Z
dspace.orderedauthorsSoenksen, L. R.; Kassis, T.; Noh, M.; Griffith, L. G.; Trumper, D. L.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7890-7209
dc.identifier.orcidhttps://orcid.org/0000-0001-8851-1224
dc.identifier.orcidhttps://orcid.org/0000-0001-5876-8854
dc.identifier.orcidhttps://orcid.org/0000-0002-1801-5548
dc.identifier.orcidhttps://orcid.org/0000-0001-5358-5450
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record