Show simple item record

dc.contributor.authorChaudhuri, Anirban
dc.contributor.authorLam, Remi
dc.contributor.authorWillcox, Karen E
dc.date.accessioned2018-07-20T19:33:04Z
dc.date.available2018-07-20T19:33:04Z
dc.date.issued2017-08
dc.identifier.issn0001-1452
dc.identifier.issn1533-385X
dc.identifier.urihttp://hdl.handle.net/1721.1/117036
dc.description.abstractFixed point iteration is a common strategy to handle interdisciplinary coupling within a feedback-coupled multidisciplinary analysis. For each coupled analysis, this requires a large number of disciplinary high-fidelity simulations to resolve the interactions between different disciplines. When embedded within an uncertainty analysis loop (e.g., with Monte Carlo sampling over uncertain parameters), the number of high-fidelity disciplinary simulations quickly becomes prohibitive, because each sample requires a fixed point iteration and the uncertainty analysis typically involves thousands or even millions of samples. This paper develops a method for uncertainty quantification in feedback-coupled systems that leverage adaptive surrogates to reduce the number of cases forwhichfixedpoint iteration is needed. The multifidelity coupled uncertainty propagation method is an iterative process that uses surrogates for approximating the coupling variables and adaptive sampling strategies to refine the surrogates. The adaptive sampling strategies explored in this work are residual error, information gain, and weighted information gain. The surrogate models are adapted in a way that does not compromise the accuracy of the uncertainty analysis relative to the original coupled high-fidelity problem as shown through a rigorous convergence analysis.en_US
dc.description.sponsorshipUnited States. Army Research Office. Multidisciplinary University Research Initiative (Award FA9550-15-1-0038)en_US
dc.publisherAmerican Institute of Aeronautics and Astronautics (AIAA)en_US
dc.relation.isversionofhttp://dx.doi.org/10.2514/1.J055678en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleMultifidelity Uncertainty Propagation via Adaptive Surrogates in Coupled Multidisciplinary Systemsen_US
dc.typeArticleen_US
dc.identifier.citationChaudhuri, Anirban, et al. “Multifidelity Uncertainty Propagation via Adaptive Surrogates in Coupled Multidisciplinary Systems.” AIAA Journal, vol. 56, no. 1, Jan. 2018, pp. 235–49. © 2017 by Anirban Chaudhuri, Remi Lam, and Karen Willcoxen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorChaudhuri, Anirban
dc.contributor.mitauthorLam, Remi
dc.contributor.mitauthorWillcox, Karen E
dc.relation.journalAIAA Journalen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-04-17T14:25:03Z
dspace.orderedauthorsChaudhuri, Anirban; Lam, Remi; Willcox, Karenen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2281-3067
dc.identifier.orcidhttps://orcid.org/0000-0003-4222-5358
dc.identifier.orcidhttps://orcid.org/0000-0003-2156-9338
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record