Show simple item record

dc.contributor.authorWu, Yadong
dc.contributor.authorZhang, Pengfei
dc.contributor.authorShen, Huitao
dc.contributor.authorZhai, Hui
dc.date.accessioned2018-07-31T12:05:34Z
dc.date.available2018-07-31T12:05:34Z
dc.date.issued2018-07
dc.date.submitted2018-03
dc.identifier.issn2469-9926
dc.identifier.issn2469-9934
dc.identifier.urihttp://hdl.handle.net/1721.1/117207
dc.description.abstractMotivated by the question whether the empirical fitting of data by neural networks can yield the same structure of physical laws, we apply neural networks to a quantum-mechanical two-body scattering problem with short-range potentials—a problem that by itself plays an important role in many branches of physics. After training, the neural network can accurately predict s-wave scattering length, which governs the low-energy scattering physics. By visualizing the neural network, we show that it develops perturbation theory order by order when the potential depth increases, without solving the Schrödinger equation or obtaining the wave function explicitly. The result provides an important benchmark to the machine-assisted physics research or even automated machine learning physics laws.en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevA.98.010701en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleVisualizing a neural network that develops quantum perturbation theoryen_US
dc.typeArticleen_US
dc.identifier.citationWu, Yadong, Pengfei Zhang, Huitao Shen and Hui Zhai. "Visualizing a neural network that develops quantum perturbation theory." Physucial Review A 98 (2018), 010701.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorShen, Huitao
dc.relation.journalPhysical Review Aen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-07-30T16:18:11Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsWu, Yadong; Zhang, Pengfei; Shen, Huitao; Zhai, Huien_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1667-8011
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record