MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Binary decision rules for multistage adaptive mixed-integer optimization

Author(s)
Georghiou, Angelos; Bertsimas, Dimitris J
Thumbnail
Download10107_2017_1135_ReferencePDF.pdf (458.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Decision rules provide a flexible toolbox for solving computationally demanding, multistage adaptive optimization problems. There is a plethora of real-valued decision rules that are highly scalable and achieve good quality solutions. On the other hand, existing binary decision rule structures tend to produce good quality solutions at the expense of limited scalability and are typically confined to worst-case optimization problems. To address these issues, we first propose a linearly parameterised binary decision rule structure and derive the exact reformulation of the decision rule problem. In the cases where the resulting optimization problem grows exponentially with respect to the problem data, we provide a systematic methodology that trades-off scalability and optimality, resulting to practical binary decision rules. We also apply the proposed binary decision rules to the class of problems with random-recourse and show that they share similar complexity as the fixed-recourse problems. Our numerical results demonstrate the effectiveness of the proposed binary decision rules and show that they are (i) highly scalable and (ii) provide high quality solutions. Keywords: Adaptive optimization, Binary decision rules, Mixed-integer optimization
Date issued
2017-03
URI
http://hdl.handle.net/1721.1/117402
Department
Sloan School of Management
Journal
Mathematical Programming
Publisher
Springer Berlin Heidelberg
Citation
Bertsimas, Dimitris, and Angelos Georghiou. “Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization.” Mathematical Programming, vol. 167, no. 2, Feb. 2018, pp. 395–433.
Version: Author's final manuscript
ISSN
0025-5610
1436-4646

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.