Show simple item record

dc.contributor.authorGeorghiou, Angelos
dc.contributor.authorBertsimas, Dimitris J
dc.date.accessioned2018-08-17T20:23:00Z
dc.date.available2018-08-17T20:23:00Z
dc.date.issued2017-03
dc.identifier.issn0025-5610
dc.identifier.issn1436-4646
dc.identifier.urihttp://hdl.handle.net/1721.1/117402
dc.description.abstractDecision rules provide a flexible toolbox for solving computationally demanding, multistage adaptive optimization problems. There is a plethora of real-valued decision rules that are highly scalable and achieve good quality solutions. On the other hand, existing binary decision rule structures tend to produce good quality solutions at the expense of limited scalability and are typically confined to worst-case optimization problems. To address these issues, we first propose a linearly parameterised binary decision rule structure and derive the exact reformulation of the decision rule problem. In the cases where the resulting optimization problem grows exponentially with respect to the problem data, we provide a systematic methodology that trades-off scalability and optimality, resulting to practical binary decision rules. We also apply the proposed binary decision rules to the class of problems with random-recourse and show that they share similar complexity as the fixed-recourse problems. Our numerical results demonstrate the effectiveness of the proposed binary decision rules and show that they are (i) highly scalable and (ii) provide high quality solutions. Keywords: Adaptive optimization, Binary decision rules, Mixed-integer optimizationen_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10107-017-1135-6en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleBinary decision rules for multistage adaptive mixed-integer optimizationen_US
dc.typeArticleen_US
dc.identifier.citationBertsimas, Dimitris, and Angelos Georghiou. “Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization.” Mathematical Programming, vol. 167, no. 2, Feb. 2018, pp. 395–433.en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorBertsimas, Dimitris J
dc.relation.journalMathematical Programmingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-01-30T04:46:14Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg and Mathematical Optimization Society
dspace.orderedauthorsBertsimas, Dimitris; Georghiou, Angelosen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-1985-1003
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record