Show simple item record

dc.contributor.authorChen, Dexin
dc.contributor.authorMao, Xianwen
dc.contributor.authorTian, Wenda
dc.contributor.authorRen, Yinying
dc.contributor.authorCurtis, Sarah E.
dc.contributor.authorBuss, Marjorie T.
dc.contributor.authorRutledge, Gregory C
dc.contributor.authorHatton, Trevor Alan
dc.date.accessioned2018-08-24T17:31:01Z
dc.date.available2018-08-24T17:31:01Z
dc.date.issued2018-07
dc.date.submitted2018-07
dc.identifier.issn1754-5692
dc.identifier.issn1754-5706
dc.identifier.urihttp://hdl.handle.net/1721.1/117513
dc.description.abstractWe describe a water treatment strategy, electrochemically tunable affinity separation (ETAS), which, unlike other previously developed electrochemical processes, targets uncharged organic pollutants in water. Key to achieving ETAS resides in the development of multicomponent polymeric nanostructures that simultaneously exhibit the following characteristics: an oxidation-state dependent affinity towards neutral organics, high porosity for sufficient adsorption capacity, and high conductivity to permit electrical manipulation. A prototype ETAS adsorbent composed of nanostructured binary polymeric surfaces that can undergo an electrically-induced hydrophilic–hydrophobic transition can provide programmable control of capture and release of neutral organics in a cyclic fashion. A quantitative energetic analysis of ETAS offers insights into the tradeoff between energy cost and separation extent through manipulation of electrical swing conditions. We also introduce a generalizable materials design approach to improve the separation degree and energetic efficiency simultaneously, and identify the critical factors responsible for such enhancement via redox electrode simulations and theoretical calculations of electron transfer kinetics. The effect of operation mode and multistage configuration on ETAS performance is examined, highlighting the practicality of ETAS and providing useful guidelines for its operation at large scale. The ETAS approach is energetically efficient, environmentally friendly, broadly applicable to a wide range of organic contaminants of various molecular structures, hydrophobicity and functionality, and opens up new avenues for addressing the urgent, global challenge of water purification and wastewater management.en_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/C8EE02000Ken_US
dc.rightsCreative Commons Attribution 3.0 Unported licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleEnergetically efficient electrochemically tunable affinity separation using multicomponent polymeric nanostructures for water treatmenten_US
dc.typeArticleen_US
dc.identifier.citationMao, Xianwen et al. “Energetically Efficient Electrochemically Tunable Affinity Separation Using Multicomponent Polymeric Nanostructures for Water Treatment.” Energy & Environmental Science (July 2018) © 2018 Royal Society of Chemistryen_US
dc.contributor.departmentAbdul Latif Jameel Poverty Action Lab (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorMao, Xianwen
dc.contributor.mitauthorTian, Wenda
dc.contributor.mitauthorRen, Yinying
dc.contributor.mitauthorCurtis, Sarah E.
dc.contributor.mitauthorBuss, Marjorie T.
dc.contributor.mitauthorRutledge, Gregory C
dc.contributor.mitauthorHatton, Trevor Alan
dc.relation.journalEnergy & Environmental Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMao, Xianwen; Tian, Wenda; Ren, Yinying; Chen, Dexin; Curtis, Sarah E.; Buss, Marjorie T.; Rutledge, Gregory C.; Hatton, T. Alanen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0879-6018
dc.identifier.orcidhttps://orcid.org/0000-0002-3318-6038
dc.identifier.orcidhttps://orcid.org/0000-0002-5095-2697
dc.identifier.orcidhttps://orcid.org/0000-0001-8137-1732
dc.identifier.orcidhttps://orcid.org/0000-0002-4558-245X
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record