MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Orthogonal Dietary Niche Enables Reversible Engraftment of a Gut Bacterial Commensal

Author(s)
Kearney, Sean M; Gibbons, Sean Michael; Erdman, Susan E; Alm, Eric J
Thumbnail
Download1-s2.0-S2211124718311227-main.pdf (2.430Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Interest in manipulating the gut microbiota to treat disease has led to a need for understanding how organisms can establish themselves when introduced into a host with an intact microbial community. While probiotic or prebiotic approaches typically lead to a transient pulse in abundance of an organism, persistent establishment of an introduced species may require alternative strategies. Here, we introduce the concept of orthogonal niche engineering in the gut, where we include a resource typically absent from the diet, seaweed, to establish a customized niche for an introduced organism. We show that in the short term, co-introduction of this resource at 1% in the diet along with an organism with exclusive access to this resource, B. plebeius DSM 17135, enables it to colonize at a median abundance of 1%, frequently increasing in abundance to 10 or more percent. We construct a mathematical model of the system to infer that B. plebeius competitively acquires endogenous resources. We provide evidence that it competes with native commensals to achieve its observed abundance. We observe a diet-dependent loss in seaweed responsiveness of B. plebeius in the long term and show the potential for IgA-mediated control of putative invaders by the immune system. These results point to the potential for diet-based intervention as a means to introduce target organisms, but also indicate potential modes for failure of this strategy in the long term.
Date issued
2018-08
URI
http://hdl.handle.net/1721.1/117571
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Division of Comparative Medicine
Journal
Cell Reports
Publisher
Elsevier
Citation
Kearney, Sean M., Sean M. Gibbons, Susan E. Erdman, and Eric J. Alm. “Orthogonal Dietary Niche Enables Reversible Engraftment of a Gut Bacterial Commensal.” Cell Reports 24, no. 7 (August 2018): 1842–1851.
Version: Final published version
ISSN
22111247

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.