Show simple item record

dc.contributor.authorWang, Fei
dc.contributor.authorZhao, Weiwei
dc.contributor.authorChan, Moses H. W.
dc.contributor.authorLiu, Chaoxing
dc.contributor.authorRakhmilevich, David
dc.contributor.authorMoodera, Jagadeesh
dc.contributor.authorChang, Cui-zu
dc.date.accessioned2018-09-07T17:11:29Z
dc.date.available2018-09-07T17:11:29Z
dc.date.issued2018-09
dc.date.submitted2018-08
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.urihttp://hdl.handle.net/1721.1/117672
dc.description.abstractThe Dirac electrons occupying the surface states (SSs) of topological insulators (TIs) have been predicted to exhibit many exciting magnetotransport phenomena. Here we report the experimental observation of an unconventional planar Hall effect (PHE) and a gate-tunable hysteretic planar magnetoresistance in EuS/TI heterostructures, in which EuS is a ferromagnetic insulator (FMI) with an in-plane magnetization. In such exchange-coupled FMI/TI heterostructures, we find a significant (suppressed) PHE when the in-plane magnetic field is parallel (perpendicular) to the electric current. This behavior differs from previous observations of the PHE in ferromagnets and semiconductors. Furthermore, as the thickness of the 3D TI films is reduced into the 2D limit, in which the Dirac SSs develop a hybridization gap, we find a suppression of the PHE around the charge-neutral point indicating the vital role of Dirac SSs in this phenomenon. To explain our findings, we outline a symmetry argument that excludes linear Hall mechanisms and suggest two possible nonlinear Hall mechanisms that can account for all the essential qualitative features in our observations.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMR-1207469)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-13-1-0301)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (STC Center for Integrated Quantum Materials. Grant DMR1231319)en_US
dc.description.sponsorshipAlfred P. Sloan Foundation (Research Fellowship)en_US
dc.description.sponsorshipUnited States. Army Research Office (Young Investigator Program Award W911NF1810198)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.98.094404en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleUnconventional planar Hall effect in exchange-coupled topological insulator–ferromagnetic insulator heterostructuresen_US
dc.typeArticleen_US
dc.identifier.citationRakhmilevich, David, et al. “Unconventional Planar Hall Effect in Exchange-Coupled Topological Insulator–Ferromagnetic Insulator Heterostructures.” Physical Review B, vol. 98, no. 9, Sept. 2018. © 2018 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.contributor.departmentFrancis Bitter Magnet Laboratory (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorRakhmilevich, David
dc.contributor.mitauthorMoodera, Jagadeesh
dc.contributor.mitauthorChang, Cui-zu
dc.relation.journalPhysical Review Ben_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-09-06T18:00:09Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsRakhmilevich, David; Wang, Fei; Zhao, Weiwei; Chan, Moses H. W.; Moodera, Jagadeesh S.; Liu, Chaoxing; Chang, Cui-Zuen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2480-1211
dc.identifier.orcidhttps://orcid.org/0000-0001-7413-5715
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record