Show simple item record

dc.contributor.authorPortell, Andrew
dc.contributor.authorLarios, Dalia
dc.contributor.authorPiel, Brandon P.
dc.contributor.authorMathur, Natasha
dc.contributor.authorZhou, Chensheng
dc.contributor.authorCoakley, Raven Vlahos
dc.contributor.authorBartels, Alan
dc.contributor.authorBowden, Michaela
dc.contributor.authorHerbert, Zach
dc.contributor.authorGilhooley, Sean
dc.contributor.authorCarter, Jacob
dc.contributor.authorCañadas, Israel
dc.contributor.authorThai, Tran C.
dc.contributor.authorKitajima, Shunsuke
dc.contributor.authorChiono, Valeria
dc.contributor.authorPaweletz, Cloud P.
dc.contributor.authorJenkins, Russell W.
dc.contributor.authorAref, Amir Reza
dc.contributor.authorIvanova, Elena
dc.contributor.authorCampisi, Marco
dc.contributor.authorHill, Sarah J
dc.contributor.authorBarbie, David
dc.contributor.authorKamm, Roger Dale
dc.date.accessioned2018-09-17T18:20:06Z
dc.date.available2018-09-17T18:20:06Z
dc.date.issued2018-09
dc.date.submitted2018-03
dc.identifier.issn1473-0197
dc.identifier.issn1473-0189
dc.identifier.urihttp://hdl.handle.net/1721.1/118112
dc.description.abstractMicrofluidic culture has the potential to revolutionize cancer diagnosis and therapy. Indeed, several micro- devices are being developed specifically for clinical use to test novel cancer therapeutics. To be effective, these platforms need to replicate the continuous interactions that exist between tumor cells and non- tumor cell elements of the tumor microenvironment through direct cell – cell or cell – matrix contact or by the secretion of signaling factors such as cytokines, chemokines and growth factors. Given the challenges of personalized or precision cancer therapy, especially with the advent of novel immunotherapies, a critical need exists for more sophisticated ex vivo diagnostic systems that recapitulate patient-specific tumor biol- ogy with the potential to predict response to immune-based therapies in real-time. Here, we present de- tails of a method to screen for the response of patient tumors to immune checkpoint blockade therapy, first reported in Jenkins et al. Cancer Discovery, 2018, 8,196 – 215, with updated evaluation of murine- and patient-derived organotypic tumor spheroids (MDOTS/PDOTS), including evaluation of the requirement for 3D microfluidic culture in MDOTS, demonstration of immune-checkpoint sensitivity of PDOTS, and ex- panded evaluation of tumor – immune interactions using RNA-sequencing to infer changes in the tumor – immune microenvironment. We also examine some potential improvements to current systems and dis- cuss the challenges in translating such diagnostic assays to the clinic.en_US
dc.description.sponsorshipRobert A. and Renée E. Belfer Foundationen_US
dc.description.sponsorshipErmenegildo Zegna Founder (scholarship)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (NCI-R01 CA190394-01)en_US
dc.description.sponsorshipMIT-POLITO grant BIOMODE – Compagnia di San Paoloen_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (NCI-U01 CA214381-01)en_US
dc.description.sponsorshipGloria T. Maheu and Heerwagen Family Funds for Lung Cancer Researchen_US
dc.description.sponsorshipAmerican Cancer Society. Lung Cancer Dream Team Translational Research Grant (SU2C-AACR-DT17-15)en_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistry (RSC)en_US
dc.relation.isversionofhttps://doi.org/10.1039/C8LC00322Jen_US
dc.rightsCreative Commons Attribution-NonCommercial 3.0 Unporteden_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.title3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockadeen_US
dc.typeArticleen_US
dc.identifier.citationAref, Amir R., Marco Campisi, Elena Ivanova, Andrew Portell, Dalia Larios, Brandon P. Piel, Natasha Mathur, et al. “3D Microfluidic Ex Vivo Culture of Organotypic Tumor Spheroids to Model Immune Checkpoint Blockade.” Lab on a Chip (2018).en_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorAref, Amir Reza
dc.contributor.mitauthorIvanova, Elena
dc.contributor.mitauthorCampisi, Marco
dc.contributor.mitauthorHill, Sarah J
dc.contributor.mitauthorBarbie, David
dc.contributor.mitauthorKamm, Roger Dale
dc.relation.journalLab on a Chipen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAref, Amir R.; Campisi, Marco; Ivanova, Elena; Portell, Andrew; Larios, Dalia; Piel, Brandon P.; Mathur, Natasha; Zhou, Chensheng; Coakley, Raven Vlahos; Bartels, Alan; Bowden, Michaela; Herbert, Zach; Hill, Sarah; Gilhooley, Sean; Carter, Jacob; Cañadas, Israel; Thai, Tran C.; Kitajima, Shunsuke; Chiono, Valeria; Paweletz, Cloud P.; Barbie, David A.; Kamm, Roger D.; Jenkins, Russell W.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9199-9459
dc.identifier.orcidhttps://orcid.org/0000-0002-7232-304X
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record