MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular-Level Insights into Oxygen Reduction Catalysis by Graphite-Conjugated Active Sites

Author(s)
Ricke, Nathan Darrell; Murray, Alexander T; Shepherd, James J; Welborn, Matthew Gregory; Fukushima, Tomohiro; Van Voorhis, Troy; Surendranath, Yogesh; ... Show more Show less
Thumbnail
DownloadNGCC_Manscript_ACSCat_Final_Resub.pdf (1.924Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Using a combination of experimental and computational investigations, we assemble a consistent mechanistic model for the oxygen reduction reaction (ORR) at molecularly well-defined graphite-conjugated catalyst (GCC) active sites featuring aryl-pyridinium moieties (N⁺-GCC). ORR catalysis at glassy carbon surfaces modified with N⁺-GCC fragments displays near-first-order dependence in O₂ partial pressure and near-zero-order dependence on electrolyte pH. Tafel analysis suggests an equilibrium one-electron transfer process followed by a rate-limiting chemical step at modest overpotentials that transitions to a rate-limiting electron transfer sequence at higher overpotentials. Finite-cluster computational modeling of the N⁺-GCC active site reveals preferential O₂ adsorption at electrophilic carbons alpha to the pyridinium moiety. Together, the experimental and computational data indicate that ORR proceeds via a proton-decoupled O₂ activation sequence involving either concerted or stepwise electron transfer and adsorption of O₂, which is then followed by a series of electron/proton transfer steps to generate water and turn over the catalytic cycle. The proposed mechanistic model serves as a roadmap for the bottom-up synthesis of highly active N-doped carbon ORR catalysts. Keywords: density functional theory; electrocatalysis; mechanistic studies; N-doped carbon; oxygen reduction
Date issued
2017-09
URI
http://hdl.handle.net/1721.1/118382
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
ACS Catalysis
Publisher
American Chemical Society (ACS)
Citation
Ricke, Nathan D. et al. “Molecular-Level Insights into Oxygen Reduction Catalysis by Graphite-Conjugated Active Sites.” ACS Catalysis 7, 11 (October 2017): 7680–7687 © 2017 American Chemical Society
Version: Author's final manuscript
ISSN
2155-5435
2155-5435

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.