Show simple item record

dc.contributor.authorRicke, Nathan Darrell
dc.contributor.authorMurray, Alexander T
dc.contributor.authorShepherd, James J
dc.contributor.authorWelborn, Matthew Gregory
dc.contributor.authorFukushima, Tomohiro
dc.contributor.authorVan Voorhis, Troy
dc.contributor.authorSurendranath, Yogesh
dc.date.accessioned2018-10-09T13:58:06Z
dc.date.available2018-10-09T13:58:06Z
dc.date.issued2017-09
dc.date.submitted2017-09
dc.identifier.issn2155-5435
dc.identifier.issn2155-5435
dc.identifier.urihttp://hdl.handle.net/1721.1/118382
dc.description.abstractUsing a combination of experimental and computational investigations, we assemble a consistent mechanistic model for the oxygen reduction reaction (ORR) at molecularly well-defined graphite-conjugated catalyst (GCC) active sites featuring aryl-pyridinium moieties (N⁺-GCC). ORR catalysis at glassy carbon surfaces modified with N⁺-GCC fragments displays near-first-order dependence in O₂ partial pressure and near-zero-order dependence on electrolyte pH. Tafel analysis suggests an equilibrium one-electron transfer process followed by a rate-limiting chemical step at modest overpotentials that transitions to a rate-limiting electron transfer sequence at higher overpotentials. Finite-cluster computational modeling of the N⁺-GCC active site reveals preferential O₂ adsorption at electrophilic carbons alpha to the pyridinium moiety. Together, the experimental and computational data indicate that ORR proceeds via a proton-decoupled O₂ activation sequence involving either concerted or stepwise electron transfer and adsorption of O₂, which is then followed by a series of electron/proton transfer steps to generate water and turn over the catalytic cycle. The proposed mechanistic model serves as a roadmap for the bottom-up synthesis of highly active N-doped carbon ORR catalysts. Keywords: density functional theory; electrocatalysis; mechanistic studies; N-doped carbon; oxygen reductionen_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Basic Energy Sciences (Award DE-SC0014176)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acscatal.7b03086en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Surendranath via Erja Kajosaloen_US
dc.titleMolecular-Level Insights into Oxygen Reduction Catalysis by Graphite-Conjugated Active Sitesen_US
dc.typeArticleen_US
dc.identifier.citationRicke, Nathan D. et al. “Molecular-Level Insights into Oxygen Reduction Catalysis by Graphite-Conjugated Active Sites.” ACS Catalysis 7, 11 (October 2017): 7680–7687 © 2017 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.approverSurendranath, Yogeshen_US
dc.contributor.mitauthorRicke, Nathan Darrell
dc.contributor.mitauthorMurray, Alexander T
dc.contributor.mitauthorShepherd, James J
dc.contributor.mitauthorWelborn, Matthew Gregory
dc.contributor.mitauthorFukushima, Tomohiro
dc.contributor.mitauthorVan Voorhis, Troy
dc.contributor.mitauthorSurendranath, Yogesh
dc.relation.journalACS Catalysisen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRicke, Nathan D.; Murray, Alexander T.; Shepherd, James J.; Welborn, Matthew G.; Fukushima, Tomohiro; Van Voorhis, Troy; Surendranath, Yogeshen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5338-8876
dc.identifier.orcidhttps://orcid.org/0000-0002-6164-485X
dc.identifier.orcidhttps://orcid.org/0000-0001-8659-6535
dc.identifier.orcidhttps://orcid.org/0000-0002-6556-3571
dc.identifier.orcidhttps://orcid.org/0000-0001-7111-0176
dc.identifier.orcidhttps://orcid.org/0000-0003-1016-3420
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record