MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anisotropic (2+1)d growth and Gaussian limits of q-Whittaker processes

Author(s)
Corwin, Ivan; Ferrari, Patrik L.; Borodin, Alexei
Thumbnail
Download440_2017_809_ReferencePDF.pdf (763.1Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract We consider a discrete model for anisotropic (2 + 1)-dimensional growth of an interface height function. Owing to a connection with q-Whittaker functions, this system enjoys many explicit integral formulas. By considering certain Gaussian stochastic differential equation limits of the model we are able to prove a space-time limit of covariances to those of the (2 + 1)-dimensional additive stochastic heat equation (or Edwards-Wilkinson equation) along characteristic directions. In particular, the bulk height function converges to the Gaussian free field which evolves according to this stochastic PDE. Keywords: 2+1 growth models, KPZ universality class, q-Whittaker processes, Gaussian Free Field, Space-time process
Date issued
2017-10
URI
http://hdl.handle.net/1721.1/118607
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Probability Theory and Related Fields
Publisher
Springer Berlin Heidelberg
Citation
Borodin, Alexei, et al. “Anisotropic (2+1)d Growth and Gaussian Limits of q-Whittaker Processes.” Probability Theory and Related Fields, vol. 172, no. 1–2, Oct. 2018, pp. 245–321.
Version: Author's final manuscript
ISSN
0178-8051
1432-2064

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.