dc.contributor.author | Corwin, Ivan | |
dc.contributor.author | Ferrari, Patrik L. | |
dc.contributor.author | Borodin, Alexei | |
dc.date.accessioned | 2018-10-18T17:00:04Z | |
dc.date.available | 2018-10-18T17:00:04Z | |
dc.date.issued | 2017-10 | |
dc.identifier.issn | 0178-8051 | |
dc.identifier.issn | 1432-2064 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/118607 | |
dc.description.abstract | Abstract We consider a discrete model for anisotropic (2 + 1)-dimensional growth of an interface height function. Owing to a connection with q-Whittaker functions, this system enjoys many explicit integral formulas. By considering certain Gaussian stochastic differential equation limits of the model we are able to prove a space-time limit of covariances to those of the (2 + 1)-dimensional additive stochastic heat equation (or Edwards-Wilkinson equation) along characteristic directions. In particular, the bulk height
function converges to the Gaussian free field which evolves according to this stochastic PDE. Keywords: 2+1 growth models, KPZ universality class, q-Whittaker processes, Gaussian Free Field, Space-time process | en_US |
dc.description.sponsorship | Galileo Galilei Institute for Theoretical Physics (Arcetri, Italy) | en_US |
dc.description.sponsorship | Kavli Institute for Theoretical Physics | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant PHY-1125915) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS-1056390) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS-1607901) | en_US |
dc.description.sponsorship | Simons Foundation. Postdoctoral Fellowship | en_US |
dc.description.sponsorship | Radcliffe Institute for Advanced Study (Fellowship) | en_US |
dc.publisher | Springer Berlin Heidelberg | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s00440-017-0809-6 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | Springer Berlin Heidelberg | en_US |
dc.title | Anisotropic (2+1)d growth and Gaussian limits of q-Whittaker processes | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Borodin, Alexei, et al. “Anisotropic (2+1)d Growth and Gaussian Limits of q-Whittaker Processes.” Probability Theory and Related Fields, vol. 172, no. 1–2, Oct. 2018, pp. 245–321. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.contributor.mitauthor | Borodin, Alexei | |
dc.relation.journal | Probability Theory and Related Fields | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-09-07T03:47:55Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | Springer-Verlag GmbH Germany | |
dspace.orderedauthors | Borodin, Alexei; Corwin, Ivan; Ferrari, Patrik L. | en_US |
dspace.embargo.terms | N | en |
dc.identifier.orcid | https://orcid.org/0000-0002-2913-5238 | |
mit.license | OPEN_ACCESS_POLICY | en_US |