MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hierarchically structured surfaces for boiling critical heat flux enhancement

Author(s)
Enright, Ryan; Chu, Kuang-Han; Joung, Young soo; Buie, Cullen; Wang, Evelyn
Thumbnail
Download2013_APL_Chu_Joung.pdf (896.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We report large enhancements in critical heat flux (CHF) on hierarchically structured surfaces, fabricated using electrophoretic deposition of silica nanoparticles on microstructured silicon and electroplated copper microstructures covered with copper oxide (CuO) nanostructures. A critical heat flux of ≈250 W/cm² was achieved on a CuO hierarchical surface with a roughness factor of 13.3, and good agreement between the model proposed in our recent study and the current data was found. These results highlight the important role of roughness using structures at multiple length scales for CHF enhancement. This high heat removal capability promises an opportunity for high flux thermal management.
Date issued
2013-04
URI
http://hdl.handle.net/1721.1/118990
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Applied Physics Letters
Publisher
American Institute of Physics (AIP)
Citation
Chu, Kuang-Han et al. “Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement.” Applied Physics Letters 102, 15 (April 2013): 151602 © 2013 AIP Publishing
Version: Final published version
ISSN
0003-6951
1077-3118

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.