MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Finite dimensional Hopf actions on Weyl algebras

Author(s)
Cuadra, Juan; Walton, Chelsea; Etingof, Pavel I
Thumbnail
DownloadEtingof_Finite dimensional.pdf (192.3Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
We prove that any action of a finite dimensional Hopf algebra H on a Weyl algebra A over an algebraically closed field of characteristic zero factors through a group action. In other words, Weyl algebras do not admit genuine finite quantum symmetries. This improves a previous result by the authors, where the statement was established for semisimple H. The proof relies on a refinement of the method previously used: namely, considering reductions of the action of H on A modulo prime powers rather than primes. We also show that the result holds, more generally, for algebras of differential operators. This gives an affirmative answer to a question posed by the last two authors. Keywords: Hopf algebra action; Weyl algebra; Algebra of differential operators; Reduction modulo prime powers
Date issued
2016-07
URI
http://hdl.handle.net/1721.1/119625
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Advances in Mathematics
Publisher
Elsevier BV
Citation
Cuadra, Juan et al. “Finite Dimensional Hopf Actions on Weyl Algebras.” Advances in Mathematics 302 (October 2016): 25–39 © 2016 Elsevier Inc.
Version: Original manuscript
ISSN
0001-8708
1090-2082

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.