Show simple item record

dc.contributor.authorMcConville, Thomas
dc.date.accessioned2018-12-18T15:05:19Z
dc.date.available2018-12-18T15:05:19Z
dc.date.issued2017-12
dc.identifier.issn0167-8094
dc.identifier.issn1572-9273
dc.identifier.urihttp://hdl.handle.net/1721.1/119674
dc.description.abstractThe higher Bruhat order is a poset generalizing the weak order on permutations. Another special case of this poset is an ordering on simple wiring diagrams. For this case, we prove that every interval is either contractible or homotopy equivalent to a sphere. This partially proves a conjecture due to Reiner. Our proof uses some tools developed by Felsner and Weil to study wiring diagrams. Keywords: Higher Bruhat, Order complex, Mobius function, Wiring diagram, Rhombic tilingen_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttps://doi.org/10.1007/s11083-017-9446-zen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Netherlandsen_US
dc.titleHomotopy Type of Intervals of the Second Higher Bruhat Ordersen_US
dc.typeArticleen_US
dc.identifier.citationMcConville, Thomas. “Homotopy Type of Intervals of the Second Higher Bruhat Orders.” Order 35, no. 3 (December 19, 2017): 515–524.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorMcConville, Thomas
dc.relation.journalOrderen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-10-05T03:42:23Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media B.V., part of Springer Nature
dspace.orderedauthorsMcConville, Thomasen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0001-9276-4291
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record