Show simple item record

dc.contributor.authorKaess, Michael
dc.contributor.authorLeonard, John J.
dc.contributor.authorVanMiddlesworth, Mark Allen
dc.contributor.authorHover, Franz S
dc.date.accessioned2019-01-04T20:02:28Z
dc.date.available2019-01-04T20:02:28Z
dc.date.issued2015
dc.identifier.isbn978-3-319-07487-0
dc.identifier.isbn978-3-319-07488-7
dc.identifier.issn1610-7438
dc.identifier.issn1610-742X
dc.identifier.urihttp://hdl.handle.net/1721.1/119864
dc.description.abstractThis paper presents a technique for improved mapping of complex underwater environments. Autonomous underwater vehicles (AUVs) are becoming valuable tools for inspection of underwater infrastructure, and can create 3D maps of their environment using high-frequency profiling sonar. However, the quality of these maps is limited by the drift in the vehicle’s navigation system. We have developed a technique for simultaneous localization and mapping (SLAM) by aligning point clouds gathered over a short time scale using the iterative closest point (ICP) algorithm. To improve alignment, we have developed a system for smoothing these “submaps” and removing outliers. We integrate the constraints from submap alignment into a 6-DOF pose graph, which is optimized to estimate the full vehicle trajectory over the duration of the inspection task. We present real-world results using the Bluefin Hovering AUV, as well as analysis of a synthetic data set. Keywords: Point Cloud, Iterative Close Point, Dead Reckoning, Iterative Close Point, Vehicle Trajectoryen_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-12-1-0093)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-12-10020)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-10-1-0936)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-13-1-0588)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-11-1-0688)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Programen_US
dc.description.sponsorshipNational Science Foundation (U.S.). (Award IIS-1318392)en_US
dc.publisherSpringer Nature America, Incen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-07488-7_2en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleMapping 3D Underwater Environments with Smoothed Submapsen_US
dc.typeArticleen_US
dc.identifier.citationVanMiddlesworth, Mark, Michael Kaess, Franz Hover, and John J. Leonard. “Mapping 3D Underwater Environments with Smoothed Submaps.” Field and Service Robotics (2015): 17–30.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorVanMiddlesworth, Mark Allen
dc.contributor.mitauthorHover, Franz S
dc.relation.journalField and Service Roboticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-12-12T14:28:18Z
dspace.orderedauthorsVanMiddlesworth, Mark; Kaess, Michael; Hover, Franz; Leonard, John J.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2621-7633
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record