Modelling of a bridge-shaped nonlinear piezoelectric energy harvester
Author(s)
Gafforelli, G; Xu, R; Corigliano, A; Kim, Sang-Gook
DownloadGafforelli_2013_J._Phys.__Conf._Ser._476_012100.pdf (976.8Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Piezoelectric MicroElectroMechanical Systems (MEMS) energy harvesting is an attractive technology for harvesting small magnitudes of energy from ambient vibrations. Increasing the operating frequency bandwidth of such devices is one of the major issues for real world applications. A MEMS-scale doubly clamped nonlinear beam resonator is designed and developed to demonstrate very wide bandwidth and high power density. In this paper a first complete theoretical discussion of nonlinear resonating piezoelectric energy harvesting is provided. The sectional behaviour of the beam is studied through the Classical Lamination Theory (CLT) specifically modified to introduce the piezoelectric coupling and nonlinear Green-Lagrange strain tensor. A lumped parameter model is built through Rayleigh-Ritz Method and the resulting nonlinear coupled equations are solved in the frequency domain through the Harmonic Balance Method (HBM). Finally, the influence of external load resistance on the dynamic behaviour is studied. The theoretical model shows that nonlinear resonant harvesters have much wider power bandwidth than that of linear resonators but their maximum power is still bounded by the mechanical damping as is the case for linear resonating harvesters.
Date issued
2013-12Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Journal of Physics: Conference Series
Publisher
IOP Publishing
Citation
Gafforelli, G, R Xu, A Corigliano, and S G Kim. “Modelling of a Bridge-Shaped Nonlinear Piezoelectric Energy Harvester.” Journal of Physics: Conference Series 476 (December 4, 2013): 012100. © Published under licence by IOP Publishing Ltd.
Version: Final published version
ISSN
1742-6588
1742-6596