dc.contributor.author | Gafforelli, G | |
dc.contributor.author | Xu, R | |
dc.contributor.author | Corigliano, A | |
dc.contributor.author | Kim, Sang-Gook | |
dc.date.accessioned | 2019-02-13T20:49:08Z | |
dc.date.available | 2019-02-13T20:49:08Z | |
dc.date.issued | 2013-12 | |
dc.identifier.issn | 1742-6588 | |
dc.identifier.issn | 1742-6596 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/120362 | |
dc.description.abstract | Piezoelectric MicroElectroMechanical Systems (MEMS) energy harvesting is an attractive technology for harvesting small magnitudes of energy from ambient vibrations. Increasing the operating frequency bandwidth of such devices is one of the major issues for real world applications. A MEMS-scale doubly clamped nonlinear beam resonator is designed and developed to demonstrate very wide bandwidth and high power density. In this paper a first complete theoretical discussion of nonlinear resonating piezoelectric energy harvesting is provided. The sectional behaviour of the beam is studied through the Classical Lamination Theory (CLT) specifically modified to introduce the piezoelectric coupling and nonlinear Green-Lagrange strain tensor. A lumped parameter model is built through Rayleigh-Ritz Method and the resulting nonlinear coupled equations are solved in the frequency domain through the Harmonic Balance Method (HBM). Finally, the influence of external load resistance on the dynamic behaviour is studied. The theoretical model shows that nonlinear resonant harvesters have much wider power bandwidth than that of linear resonators but their maximum power is still bounded by the mechanical damping as is the case for linear resonating harvesters. | en_US |
dc.publisher | IOP Publishing | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1088/1742-6596/476/1/012100 | en_US |
dc.rights | Creative Commons Attribution 3.0 Unported license | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/ | en_US |
dc.source | IOP Publishing | en_US |
dc.title | Modelling of a bridge-shaped nonlinear piezoelectric energy harvester | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Gafforelli, G, R Xu, A Corigliano, and S G Kim. “Modelling of a Bridge-Shaped Nonlinear Piezoelectric Energy Harvester.” Journal of Physics: Conference Series 476 (December 4, 2013): 012100. © Published under licence by IOP Publishing Ltd. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.contributor.mitauthor | Kim, Sang-Gook | |
dc.relation.journal | Journal of Physics: Conference Series | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-12-11T17:40:19Z | |
dspace.orderedauthors | Gafforelli, G; Xu, R; Corigliano, A; Kim, S G | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-3125-3268 | |
mit.license | PUBLISHER_CC | en_US |