Show simple item record

dc.contributor.authorRanjan, Tanvi
dc.contributor.authorGokhale, Shreyas Shashank
dc.contributor.authorConwill, Arolyn Macdonald
dc.contributor.authorGore, Jeff
dc.date.accessioned2019-03-12T20:06:43Z
dc.date.available2019-03-12T20:06:43Z
dc.date.issued2018-12
dc.date.submitted2018-05
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/120940
dc.description.abstractMigration influences population dynamics on networks, thereby playing a vital role in scenarios ranging from species extinction to epidemic propagation. While low migration rates prevent local populations from becoming extinct, high migration rates enhance the risk of global extinction by synchronizing the dynamics of connected populations. Here, we investigate this trade-off using two mutualistic strains of E. coli that exhibit population oscillations when co-cultured. In experiments, as well as in simulations using a mechanistic model, we observe that high migration rates lead to synchronization whereas intermediate migration rates perturb the oscillations and change their period. Further, our simulations predict, and experiments show, that connected populations subjected to more challenging antibiotic concentrations have the highest probability of survival at intermediate migration rates. Finally, we identify altered population dynamics, rather than recolonization, as the primary cause of extended survival.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01 GM102311-01)en_US
dc.description.sponsorshipNational Science Foundation (Award PHY-1055154)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Award GM085279-02)en_US
dc.description.sponsorshipAlfred P. Sloan Foundation (Award BR2011-066)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Award DP2)en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41467-018-07703-yen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleMigration alters oscillatory dynamics and promotes survival in connected bacterial populationsen_US
dc.typeArticleen_US
dc.identifier.citationGokhale, Shreyas et al. “Migration Alters Oscillatory Dynamics and Promotes Survival in Connected Bacterial Populations.” Nature Communications 9, 1 (December 2018): 5273 © 2018 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorGokhale, Shreyas Shashank
dc.contributor.mitauthorConwill, Arolyn Macdonald
dc.contributor.mitauthorGore, Jeff
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-03-04T14:45:03Z
dspace.orderedauthorsGokhale, Shreyas; Conwill, Arolyn; Ranjan, Tanvi; Gore, Jeffen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6052-0345
dc.identifier.orcidhttps://orcid.org/0000-0003-4583-8555
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record