Show simple item record

dc.contributor.authorDai, Siyuan
dc.contributor.authorZhang, Jiawei
dc.contributor.authorMa, Qiong
dc.contributor.authorKittiwatanakul, Salinporn
dc.contributor.authorMcLeod, Alex
dc.contributor.authorChen, Xinzhong
dc.contributor.authorCorder, Stephanie Gilbert
dc.contributor.authorWatanabe, Kenji
dc.contributor.authorTaniguchi, Takashi
dc.contributor.authorLu, Jiwei
dc.contributor.authorDai, Qing
dc.contributor.authorJarillo-Herrero, Pablo
dc.contributor.authorLiu, Mengkun
dc.contributor.authorBasov, D. N.
dc.date.accessioned2019-05-30T15:58:00Z
dc.date.available2019-05-30T15:58:00Z
dc.date.issued2019-05
dc.date.submitted2019-02
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/1721.1/121181
dc.description.abstractUnlike conventional plasmonic media, polaritonic van der Waals (vdW) materials hold promise for active control of light-matter interactions. The dispersion relations of elementary excitations such as phonons and plasmons can be tuned in layered vdW systems via stacking using functional substrates. In this work, infrared nanoimaging and nanospectroscopy of hyperbolic phonon polaritons are demonstrated in a novel vdW heterostructure combining hexagonal boron nitride (hBN) and vanadium dioxide (VO₂). It is observed that the insulator-to-metal transition in VO₂ has a profound impact on the polaritons in the proximal hBN layer. In effect, the real-space propagation of hyperbolic polaritons and their spectroscopic resonances can be actively controlled by temperature. This tunability originates from the effective change in local dielectric properties of the VO₂ sublayer in the course of the temperature-tuned insulator-to-metal phase transition. The high susceptibility of polaritons to electronic phase transitions opens new possibilities for applications of vdW materials in combination with strongly correlated quantum materials. Keywords: hexagonal boron nitride; phase-change materials; polaritonsen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/adma.201900251en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titlePhase‐Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO₂en_US
dc.typeArticleen_US
dc.identifier.citationDai, Siyuan et al. "Phase‐Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO₂" Advanced Materials 31 (May 2019): 1900251 © Wiley Blackwellen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.relation.journalAdvanced Materialsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-03-27T14:44:01Z
dspace.orderedauthorsDai, Siyuan; Zhang, Jiawei; Ma, Qiong; Kittiwatanakul, Salinporn; McLeod, Alex; Chen, Xinzhong; Corder, Stephanie Gilbert; Watanabe, Kenji; Taniguchi, Takashi; Lu, Jiwei; Dai, Qing; Jarillo‐Herrero, Pablo; Liu, Mengkun; Basov, D. N.en_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T12:06:13Z
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record