Show simple item record

dc.contributor.authorAnders, Ariel S
dc.contributor.authorKaelbling, Leslie P
dc.contributor.authorLozano-Perez, Tomas
dc.date.accessioned2019-07-01T15:29:25Z
dc.date.available2019-07-01T15:29:25Z
dc.date.issued2018-09-28
dc.date.submitted2018-05
dc.identifier.issn2577-087X
dc.identifier.urihttps://hdl.handle.net/1721.1/121463
dc.description.abstractA crucial challenge in robotics is achieving reliable results in spite of sensing and control uncertainty. In this work, we explore the conformant planning approach to robot manipulation. In particular, we tackle the problem of pushing multiple planar objects simultaneously to achieve a specified arrangement without external sensing. Conformant planning is a belief-state planning problem. A belief state is the set of all possible states of the world, and the goal is to find a sequence of actions that will bring an initial belief state to a goal belief state. To do forward belief-state planning, we created a deterministic belief-state transition model from supervised learning based on off-line physics simulations. We compare our method with an on-line physics-based manipulation approach and show significantly reduced planning times and increased robustness in simulated experiments. Finally, we demonstrate the success of this approach in simulations and physical robot experiments.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1420316)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1523767)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1723381)en_US
dc.description.sponsorshipUnited States. Air Force. Office of Scientific Research (FA9550-17-1-0165)en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2018.8462892en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleReliably Arranging Objects in Uncertain Domainsen_US
dc.typeArticleen_US
dc.identifier.citationAnders, Ariel S., et al. “Reliably Arranging Objects in Uncertain Domains.” 2018 IEEE International Conference on Robotics and Automation (ICRA), 21-25 May, 2018, Brisbane, Queensland, Australia, IEEE, 2018, pp. 1603–10.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journal2018 IEEE International Conference on Robotics and Automation (ICRA)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-06-04T15:35:50Z
dspace.date.submission2019-06-04T15:35:51Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record