Show simple item record

dc.contributor.authorLi, Xiang
dc.contributor.authorTomasgard, Asgeir
dc.contributor.authorBarton, Paul I
dc.date.accessioned2019-11-11T15:30:33Z
dc.date.available2019-11-11T15:30:33Z
dc.date.issued2011-07
dc.date.submitted2011-01
dc.identifier.issn0022-3239
dc.identifier.issn1573-2878
dc.identifier.urihttps://hdl.handle.net/1721.1/122814
dc.description.abstractThis paper considers deterministic global optimization of scenario-based, two-stage stochastic mixed-integer nonlinear programs (MINLPs) in which the participating functions are nonconvex and separable in integer and continuous variables. A novel decomposition method based on generalized Benders decomposition, named nonconvex generalized Benders decomposition (NGBD), is developed to obtain ε-optimal solutions of the stochastic MINLPs of interest in finite time. The dramatic computational advantage of NGBD over state-of-the-art global optimizers is demonstrated through the computational study of several engineering problems, where a problem with almost 150,000 variables is solved by NGBD within 80 minutes of solver time. Keywords: stochastic programming; mixed-integer nonlinear programming; decomposition algorithm; global optimizationen_US
dc.description.sponsorshipNorske stats oljeselskap (Norges forskningsrad. Project 176089/S60)en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10957-011-9888-1en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleNonconvex Generalized Benders Decomposition for Stochastic Separable Mixed-Integer Nonlinear Programsen_US
dc.typeArticleen_US
dc.identifier.citationLi, Xiang et al. "Nonconvex generalized benders decomposition for stochastic separable mixed-integer nonlinear programs." Journal of Optimization Theory and Applications 151 (December 2011): 425 © 2011 Publisheren_US
dc.contributor.departmentMassachusetts Institute of Technology. Process Systems Engineering Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalJournal of Optimization Theory and Applicationsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-08-09T16:57:58Z
dspace.date.submission2019-08-09T16:57:59Z
mit.journal.volume151en_US
mit.journal.issue3en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record